ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data

Justine LABORY, PhD student

Medical Data Laboratory, IRCAN Université Cote d'Azur, Nice, France justine.labory@etu.univ-cotedazur.fr

ABEILLE

Medical Context

Methods of gene disease discovery in MD

Working hypothesis

RNA-seq to improve MD diagnosis

Bioinformatics, 2022, 1–8 https://doi.org/10.1093/bioinformatics/btac603 Advance Access Publication Date: 5 September 2022 Original Paper

2022 Paper OXFORD

ABEILLE

Gene expression

ABEILLE: a novel method for ABerrant Expression Identification empLoying machine LEarning from RNA-sequencing data

Justine Labory^{1,2,†}, Gwendal Le Bideau^{2,†}, David Pratella¹, Jean-Elisée Yao¹, Samira Ait-El-Mkadem Saadi², Sylvie Bannwarth², Loubna El-Hami^{1,2}, Véronique Paquis-Fluckinger^{2,‡} and Silvia Bottini (**b**^{1,*,‡}

https://github.com/UCA-MSI/ABEILLE

Labory et al. Bioinformatics 20

Methods to identify Aberrant Gene Expression (AGE): pros and cons

Methods to identify AGE: pros and cons

The autoencoder

How to use AE to identify AGEs

AGE can be considered as noise

Reconstructed data are denoised

The comparison between reconstructed and original data yields the indentification of AGEs.

Supervised phase – Creation of semi-synthetics datasets

1000 individuals

56 200 transcripts

Supervised phase – Creation of semi-synthetics datasets

Repeat the process 20 times

Supervised phase – Train the decision

tree

II - Compute metrics to assess the reconstruction fidelity

> Define new scores to compare I expr and

> > R expr

III - Evaluate reconstruction fidelity

Parameters calculated on each linear regression Sample Patient1 Patient1 Patient1 Transcript aene1 aene2 aene3 divergence 0.30 8.81 -4.54 score delta count 0.80 1.71 -1.24 3.95 -2.73 typeerror 1.33 0.05 0.67 0.18 hat 0.50 5.93 dfbetas var 1.30 Classificatio No Injected Injected

AGE

AGE

AGE

n

Parameters calculated on linear regression are used to feed a decision tree

IV - Identify thresholds for AGE classification

Case study

Goal : Compare ABEILLE to other methods

Performances of the four tools on real

These observations rule out OutPyR as a tool for AGE identification in this context.

Performances of ABEILLE and OUTRIDER

AGEs found by ABEILLE are more enriched in terms related to mitochondrial biology than the AGEs found by OUTRIDER.

anomaly score

divergence score

AGE detection on small dataset size

The performances of ABEILLE do not depend on the number of samples

8

1

Performances of ABEILLE and OUTRIDER on semi-synthetic datasets

- On datasets with 0.1‰ AGEs injected, ABEILLE ranking by Delta Count showed the higher performances than the ranking by Divergence Score
- When the percentage of injected AGEs diminish, the ranking by Divergence Score yielded better results for ABEILLE.
- OUTRIDER ranking by p-values are slightly better than by Z-score

The performances of the tools depend on the score used to rank the AGEs

ABEILLE VAE features captures biological

Conclusion

ADVANTAGES

 ABEILLE identifies AGEs from RNA-seq data without the need of replicates and without assumption on the distribution

 ABEILLE showed good performances on small datasets and datasets with few AGEs

DRAWBACKS

- The decision tree must be trained for each different omic
- ABEILLE
- ABEILLE doesn't use a flexible model to do multi-omics integration and analysis

Operational director : Silvia BOTTINI

Engineers:

Djampa Kozlowski Marco Milanesio

Master students:

Marlize de Villeris Evariste Njomgue Mame Seynabou Fall Gauthier Marcovich

> Former members/student S: Fanny Simoes **David Pratella Gwendal Le** Bideau

Morgane Fiervielle Loubna El-Hami Paola Porracciolo

la science pour la vie, l'humain, la terre

Assistance Publique Hôpitaux de Marseille

https://github.com/UCA-MSI/

Contact: justine.labory@etu.univ-