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From Stenton and Prokisch EBioMedicine 2020
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Adapted from Alston et al. J. of Pathology 2020

Variant of uncertain significance: 
“Innocent until proven guilty” 
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Statistical methods

Negative binomial 
distribution

Normal distribution

SVA (Frésard et al. 2019) DESeq2 (Love et al. 2014; 
Kremer et al. 2017)

OUTRIDER (Brechtmann et al. 
2018)

Problem

❌No replicates

❌No control group

❌Small cohorts

❌No common 
patterns

Methods to identify Aberrant Gene 
Expression (AGE): pros and cons



Machine learning methods

Statistical methods

Autoencoders
Negative binomial 

distribution
Normal distribution

SVA (Frésard et al. 2019)

ABEILLE

Solution

Methods to identify AGE: pros and cons
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DESeq2 (Love et al. 2014; 
Kremer et al. 2017)

OUTRIDER (Brechtmann et al. 
2018)
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Input :
Gene expression 
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data reconstructed 
by the VAE 

The comparison between reconstructed and original data 
yields the indentification of AGEs.
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yields the indentification of AGEs.

AGE can be considered as 
noise 

Reconstructed data are denoised

g
e
n

e
s

patientsReads count Reconstructe
d reads count

How to use AE to identify AGEs



Supervised phase – 
Creation of semi-synthetics datasets

54 tissues 1000 individuals 56 200 transcripts



Supervised phase – 
Creation of semi-synthetics datasets

Generate computational 
AGEs by replacing 
randomly 10 000 
expression values

Repeat the process 20 times

1 tissue 504 individuals 56 200 transcripts
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I - Use VAE as a generative model

Supervised phase – Train the decision 
tree II – Compute metrics to assess the reconstruction 

fidelity

Define new 
scores to 
compare 

I_expr and 
R_expr

III - Evaluate reconstruction fidelity 

Sample Patient1 Patient1 Patient1 …..

Transcript gene1 gene2 gene3 …..
divergence_

score 0.30 8.81 -4.54 …..

delta_count 0.80 1.71 -1.24 …..

typeerror 1.33 3.95 -2.73 …..

hat 0.05 0.67 0.18 …..

dfbetas_var 0.50 5.93 1.30 …..
Classificatio

n
No    
AGE

Injected 
AGE

Injected 
AGE …..

Linear 
regression

Parameters calculated on each linear 
regression

IV – Identify thresholds for AGE classification

Parameters 
calculated on 

linear 
regression are 
used to feed a 
decision tree
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Unsupervised phase - ABEILLE framework

Compute the 2 
novel quantities 
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Linear 
regression

AGE 
detection

AGE 
classification

Divergence 
scoreDelta Count

Anomaly 
Score

Unsupervised phase - ABEILLE framework

Compute the 2 
novel quantities 



119 patients with MD 
suspicion

(from Kremer et al. Nat 
Comm 2017)

ABEILLE
OUTRID
EROutPyR

RNA-seq

Kremer

Case study

Validation of 5 
candidate genes

in 6 patients

Goal : Compare ABEILLE to other methods
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These observations rule out OutPyR as a tool for AGE identification in 
this context.  

These observations rule out OutPyR as a tool for AGE identification in 
this context.  

Performances of the four tools on real 
dataset
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AGEs found by ABEILLE are more enriched in terms related to 
mitochondrial biology than the AGEs found by OUTRIDER.

AGEs found by ABEILLE are more enriched in terms related to 
mitochondrial biology than the AGEs found by OUTRIDER.

Performances of ABEILLE and OUTRIDER
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The performances of ABEILLE do not depend on the 
number of samples 

The performances of ABEILLE do not depend on the 
number of samples 

AGE detection on small dataset size



Datasets with no 
AGE

Computational AGE 
generation

Datasets with synthetic 
AGE

Performances of ABEILLE and OUTRIDER 
on semi-synthetic datasets

• On datasets with 0.1‰ AGEs 
injected, ABEILLE ranking by Delta 
Count showed the higher 
performances than the ranking by 
Divergence Score

• When the percentage of injected 
AGEs diminish, the ranking by 
Divergence Score yielded better 
results for ABEILLE.

• OUTRIDER ranking by p-values are 
slightly better than by Z-score

 The performances of the tools 
depend on the score used to rank the 
AGEs
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Conclusion

ADVANTAGES DRAWBACKS

• ABEILLE identifies AGEs from 
RNA-seq data without the need 
of replicates and without 
assumption on the distribution

• ABEILLE showed good 
performances on small datasets 
and datasets with few AGEs

• The decision tree must be 
trained for each different omic 

• ABEILLE doesn’t use a flexible 
model to do multi-omics 
integration and analysis
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