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Outline
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Analysing the biological medium01
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Standard deconvolution pipeline03
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Multivariate extension to standard 
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The complexity of the biological medium

Survey of the physical technics 
to decipher the biological environment

Lu et al, 2003
Mixture of cell phases

Mixture of tissues
Quon and Morris, 2009

Mixture of cell populations
Finotello and Trajanoski 2018
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Before numerical deconvolution, dilemma between either characterising the individual cell 
populations (FACS, IHC) or getting a whole transcriptomic(RNASeq, microarray) overview.

Survey of the physical technics 
to decipher the biological environment

Shen-Orr et al, 2013

Physical methods to analyse the 
biological medium
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Scenario A: increase of the gene expression is generated 
by an activation of cell population 1

Scenario B: the gene expression increases due to the 
infiltration of a new cell population 2

Identify the causal transcriptomic driver 

Shoemaker et al. 2012

resting cell population 1

activated cell population 1

cell population 2

Survey of the physical technics 
to decipher the biological environment
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Deconvolution classes

 Estimate the ratios p for all individuals with the 
purified cell signature X and bulk mixture y. 

 Try to infer cell specific expression profiles X 
based on p and y.

 Try to infer alternatively both p and X 
(unsupervised, reference-free methods). 
Undetermined problem without prior.

Partial 
deconvolution

Complete 
deconvolution

General principle of cellular deconvolution

Shen-Orr et al, 2013
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Co-regulated gene networks
Cell type proportions

T cells B cells Macrophages

Bulk
profile

C
D

3

M
H

C
-II

C
D

19

T cell pathway

Macrophage pathway

B cell pathway

CD3

MHC-
II

CD19

CD3

MHC-
II

CD19

CD3

MHC-
II

CD19

Purified referenced cell lines

C
D

3

M
H

C
-II

C
D

19

Survey of the physical technics 
to decipher the biological environment



8

27/10/2022

8

27/10/2022
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Estimate the cellular proportions
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General principle of cellular deconvolution

Step 1: collection and 
curation of datasets

Step 2: learn for each cell-type its 
associated characteristics Step 3: the deconvolution 

algorithm itself

Step 4: biological and 
statistical evaluation
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Step 1: select relevant purified cellular expression profiles
Step 1: selection of cell types

Relevance of the cell 
populations

 existence of discriminatory 
markers (memory T 

cells…)
 abundance of the cell 

population

Complexity of the 
biological medium

 Tissues populations are 
poorly characterised

 Specific individual mutations 
in tumoral environments
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pDCs

preDC

cDC1
cDC2

Microglia
Resident macrophages

(interstitial, Kupfer cells…)

Tregs

Step 1: select relevant purified cellular expression profiles
Step 1: selection of cell types

Hematopoietic stem cell lineage

Studied
cell types

Automated cell ontology using ontoProc
(Channing, 2022) package



13

27/10/2022

13

27/10/2022

Step 1: selection of relevant datasets
Step 1: selection of cell types

7 reference RNASeq datasets of purified cell types, covering a large diversity of distinct cell 
populations (75 unique cell types, mostly immune cell types), in 8 distinct tissues (mostly whole 

blood) and both healthy, tumoral and inflammatory conditions.
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Estimate the cellular proportions
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Step 2: build a sparse transcriptomic network

Step 1: collection and 
curation of datasets

Step 2: learn for each cell-type its 
associated characteristics Step 3: the deconvolution 

algorithm itself

Step 4: biological and 
statistical evaluation
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Step 2: learn the sparse GGM for each cell type

Fitted distributions before and after filtering 
using zFPKM (Hart et al, 2013) process

Step 2: build a sparse transcriptomic network

1) Filtering background noise 
from truly expressed signal

2) Select the most relevant genes

3) Learn a sparse representation of 
the interactions between the genes

In (Newman et al, 2015), selection of the G genes 
associated to the lowest condition number.

Nodes represent the genes, and 
the undirected edges the 

connections between them.
In (Zuo et al, 2016), use of INDEED to both learn a 

sparse representation, and select the most relevant genes.
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First component = noise
Second component 
= truly expressed 

genes

Filtering out noisy expression

Empirical density distribution of gene counts, 
after TPM and log2 normalization

Step 2: build a sparse transcriptomic network
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Fitted distributions before and after
filtering with truncated Gaussian mixtures 

(MixNorm, Yin et al, 2020)
Fitted distributions before and after 

filtering using zFPKM process.

global distribution Fitted expressed 
genes

Noise signal

5% threshold of the 
expressed signalFiltering out noisy expression

Step 2: build a sparse transcriptomic network



18

27/10/2022

18

27/10/2022

Multivariate Gaussian Distributions

General (or ellipsoidal) familyDiagonal familySpherical family
Banfield and Raftery (1993) and Celeux and Govaert (1995)

Multivariate gaussian distribution

Mean vector Covariance matrix

Step 2: build a sparse transcriptomic network

14 available parametrisations, included in 3 super-families

EII 

volume shape orientation

E: equal
V: variable

I: invariant (or identity)

controls the overall volume

controls the directions

permutation matrix, control the shape



19

27/10/2022

19

27/10/2022

Markov networks
Step 2: build a sparse transcriptomic network

An overview of INDEED: input is transcriptomics data and the output is a 
prioritized ranked list gene based on the activity score defined within INDEED.

Zuo, 2016

Differential network between conditions 1 and 2

Multivariate Gaussian distribution

Penalised Lasso (useful when N < G)
(Bickel and Levina, 2008)

Estimate a sparse covariance structure using gLasso (Friedman et al, 2008) algorithm

 Activity scores: for each gene, sum of the 
z-scores of the neighbour differential 
values

 Neighbour: gene statistically differentially 
connected (permutation test) to our gene of 
interest
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From GGMs to GBNs
Step 2: build a sparse transcriptomic network

Sparse graphical GGM

+ Inverse of the sparse covariance structure (=precision matrix) 
has nice interesting properties, after some normalization

- Estimator is shrunk: find asymptotically the good support (= the true 
zeros (Meinshausen and Bühlmann, 2006 // Banerjee and other 2007)) 
but the penalized estimator tends to underestimate true correlation)

CD3

MHC-
II

CD19 CD3 CD19

MHC-II

CD3

CD19

MHC-II

Directed GBNs
1. Graph triangulation (adds a cord to any cycle 

above three vertices)
2. Hypothesis: from a triangular graph, able to orient 

the edges and learn the structure of a GBN
3. From the factorization of a GBN, learn easily the 

conditional distribution of each node to its parents

Learn the MLE covariance matrix 
with constrained zeros

General formula from conditional distribution to global joined 
distribution, to retrieve the global multivariate Gaussian 

distribution.
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GBNs (Gaussian Bayesian networks)
Step 2: build a sparse transcriptomic network

X3

X2
X1

CD3 CD19

MHC-II

CD3

CD19

MHC-II

Product of Gaussian distributions From conditional to joint distribution
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Estimate the cellular proportions
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Estimate cellular ratios

Step 1: collection and 
curation of datasets

Step 2: learn for each cell-type its 
associated characteristics Step 3: the deconvolution 

algorithm itself

Step 4: biological and 
statistical evaluation
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Step 3: estimate the cell ratios
Estimate cellular ratios

Main challenges to cope with cellular deconvolution

Batch effect

 Sequencing method (ssRNA-Seq, 
RNA-Seq, microarray)

 Gene annotation and library

 Normalization (TPM, CPM, raw 
counts, …)

Phenotypical conditions

 Heterotopic conditions (highly 
dependent on the tissue 
condition)

 Tumoral environments

 Poorly described tissues

Cellular distributions

 Rare cell types

 “Spillover-effect”

 Model gene distributions 
(truncated and discrete by 
nature)

 Decorrelation between cell 
abundance and cell 
transcriptome

 Pathways
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 Abundance scores 
(dtangle algorithm, …)
 Enrichment scores 

(GSEA, xCell, …)

M
arker-based

Probabilistic

Estimate the ratios from the reference signature and bulk mixture

• Model the distribution of 
gene counts as a linear 
combination of the 
individual cell types 
distributions

• Variants integrate 
robustness to outliers, 
“spill-over effects”, …

Re
gr

es
si

on

Qiao et al, 2012

Main deconvolution categories for cellular ratios estimation
Estimate cellular ratios

canonical 
LDA model

Add an unknown noise 
component

Perturbation (in the same proportions) of 
the purified expression profiles
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Step 3: estimate the cellular ratios
Estimate cellular ratios

Bulk expression is computed as the weighted linear 
average of each purified cellular expression profile.

X purified cellular profiles
p cell ratios

Y bulk expression

matricial form

algebraic form

marker-based
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Graphical model of the canonical linear regression modelling. The expression of a given gene in each 
cell population is supposed fixed and independent from the others.

Graphical model of our multivariate modelling: the observed variables
are stochastic,  and the genes interplay together.

covariancemean

Step 3: estimate the cell ratios
Estimate cellular ratios
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Deriving this quantity with matrix calculus is computable, but optimizing this quantity is intractable 
with non convex optimization (two local extrema, only one corresponding to the true MLE)

 Descent-gradient based method to learn the MLE.
 Parametrization (use of exponentials) to ensure the non-negativity and sum-to-

one constraints (to be compared with Lagrangian multiplier)

With the Gaussian-Markov assumptions, OLS is the best BLUE estimator and equal to the MLE estimate.

Step 3: estimate the cell ratios
Estimate cellular ratios
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Generation of N=2000 
bulk samples Y

Test several levels of 
cell proportion disequilibrium:

 Scenario 1: 
 Scenario 2:

gene 1

gene 2

cell type
1

cell type
2

gene 1
gene 2

Generation of random purified cellular expression profile, 
independently for each individual and each cell population

Simulation results with two genes
Numerical simulation on artificial datasets
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Simulation results with two genes
Numerical simulation on artificial datasets

Complex Heatmap (Gu, 2022) of the MSE score over 
LLS estimated parameters,

with balanced and high overlapping components.
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Simulation results with two genes
Numerical simulation on artificial datasets

Same Heatmap representation as in the previous slide Heatmap of the MSE of the estimated ratios, 
but using this time the covariance information
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Poorly described cell 
populations, full exploitation 

of Encode and Blueprint 
datasets

Automatic annotation and 
description of cellular 

ontology

Refine selection of relevant 
genes:
• Automated method for 

discarding background noise
• Innovative feature-selection 

algorithms, using both the 
differential expression and 
the covariance structure

Algorithm closer to 
biological models, 

accounting for the co-
transcriptomic expression 
between the genes of the 
purified cell populations

Data collection Curation Connectivity

Conclusion
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Statistics

Sparse transcriptomic network structure, 
estimated via MLE maximisation with 

constrained zeros imputed from gLasso

Transcriptomic structure

Statistical relevance of the estimates, 
possibly by means of a Bayesian framework.

Estimation of the impact of 
external phenotype features

Environmental variation

Transcript distribution

Use of density functions closer to the 
gene distribution to model the counts

Ongoing work
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