Robust deconvolution of transcriptomic samples using the gene covariance structure Bastien CHASSAGNOL

Pierre-Henri WUILLEMIN Laboratoire d'Informatique de Paris 6 (LIP6)

Etienne BECHT Bioinformatics Grégory NUEL Laboratoire de Probabilités. Statistique et Modélisation servier

27/10/2022

Analysing the biological medium

01

A definition of cellular deconvolution

Standard deconvolution pipeline

Multivariate extension to standard deconvolution algorithms

Numerical simulation and future development

3

The complexity of the biological medium

Mixture of tissues Quon and Morris, 2009

Survey of the physical technics

to decipher the biological environment

Physical methods to analyse the biological medium

Before numerical deconvolution, dilemma between either characterising the individual cell populations (FACS, IHC) or getting a whole transcriptomic(RNASeq, microarray) overview.

Scenario A: increase of the gene expression is generated by an **activation** of cell population 1

infiltration of a new cell population 2

General principle of cellular deconvolution Deconvolution classes

Estimate the ratios *p* for all individuals with the purified cell signature **X** and bulk mixture **y**.

Try to infer cell specific expression profiles X

Partial deconvolution

- Complete deconvolution
- Try to infer alternatively both **p** and **X** (unsupervised, reference-free methods). Undetermined problem without prior.

based on **p** and **y**.

27/10/2022

6

Shen-Orr et al, 2013

Survey of the physical technics to decipher the biological environment

Co-regulated gene networks

Step 1: selection of cell types

Step 1: selection of cell types

Step 1: select relevant purified cellular expression profiles

Hematopoietic stem cell lineage

Automated cell ontology using *ontoProc* (Channing, 2022) package

Step 1: selection of cell types Step 1: selection of relevant datasets

Array accession	Cell types	Individuals	Samples	Phenotypes	Tissues	Citation
BluePrint	44	354	609	HC, tumoral	(cord) blood, thymus, bone marrow, tonsil, liver	Fernandez et al., 2016
E-MTAB-5640, the Immune Atlas	3	13	29	tumoral	kidney	Chevrier et al., 2017
ENCODE	9	13	37	HC	blood	Encode Project Consortium, 2012
GSE107011	27	13	123	HC	blood	Monaco et al, 2019
GSE137143	3	144	427	HC, auto immune	blood	Kim et al., 2021
GSE149050	4	91	223	HC, auto immune	blood	Panwar et al., 2021
GSE60424	4	20	80	HC, auto immune, Diabetes	blood	Linsley et al., 2014

7 reference RNASeq datasets of purified cell types, covering a large diversity of distinct cell populations (75 *unique cell types,* mostly immune cell types), in 8 *distinct tissues* (mostly whole blood) and both *healthy, tumoral and inflammatory* conditions.

Step 2: build a sparse transcriptomic network Step 2: learn the sparse GGM for each cell type

Step 2: build a sparse transcriptomic network

Filtering out noisy expression

Step 2: build a sparse transcriptomic network

17

5% threshold of the

expressed signal

Filtering out noisy expression

Step 2: build a sparse transcriptomic network Multivariate Gaussian Distributions

Spherical family

Diagonal family

General (or ellipsoidal) family *

Banfield and Raftery (1993) and Celeux and Govaert (1995)

Step 2: build a sparse transcriptomic network

Markov networks

Multivariate Gaussian distribution $f_{\zeta j}(\boldsymbol{X}) = \det(2\pi\Sigma_j)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{X}_i - \boldsymbol{\mu}_j)\boldsymbol{\Sigma}_j^{-1}(\boldsymbol{X}_i - \boldsymbol{\mu}_j)^{\top}\right), \quad \zeta_j = (\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$ Penalised Lasso (useful when N < G) $\boldsymbol{\Sigma}_j^{\text{Lasso}} = \arg\max_{\boldsymbol{\Sigma}_j} \ell_{\boldsymbol{\Sigma}_j}(\boldsymbol{X}_j) = \arg\max_{\boldsymbol{\Sigma}_j} \left[\underbrace{\log\left(\det\left(\boldsymbol{\Sigma}_j^{-1}\right)\right) - \underbrace{\boldsymbol{X}_j^{\top}}_{MLE} \boldsymbol{\Sigma}_j^{-1} \boldsymbol{X}}_{MLE} - \underbrace{\lambda ||\boldsymbol{\Sigma}_j^{-1} * (1 - \boldsymbol{W}_j)||_1}_{\text{Penalty term}} \right]$ Estimate a sparse covariance structure using gLasso (Friedman et al, 2008) algorithm

$$\Omega = \{\omega_{gl}, \text{ where } \Delta_{gl} = \rho_{gl}^A - \rho g l^B \neq 0\}$$

Differential network between conditions 1 and 2

- Activity scores: for each gene, sum of the z-scores of the *neighbour* differential values
- Neighbour: gene statistically differentially connected (permutation test) to our gene of interest

An overview of INDEED: input is transcriptomics data and the output is a prioritized ranked list gene based on the activity score defined within INDEED.

Step 2: build a sparse transcriptomic network From GGMs to GBNs

Sparse graphical GGM $\Theta = (\theta_{il}, (i, l) \in \{1, \dots, G\}) = \Sigma^{-1}$

+ Inverse of the sparse covariance structure (=precision matrix) has nice interesting properties, after some normalization $\rho_{i,l|V\setminus\{i,l\}} = -\frac{\theta_{il}}{\sqrt{\theta_{ii}\theta_{ll}}}$ $\forall (i,l) \in V, \quad X_i \perp \perp X_l \Leftrightarrow \rho_{i,l|V\setminus\{i,l\}} = 0$

- Estimator is shrunk: find asymptotically the good support (= the true zeros (*Meinshausen and Bühlmann*, 2006 // *Banerjee and other* 2007)) but the penalized estimator tends to underestimate true correlation)

Learn the MLE covariance matrix with constrained zeros

General formula from conditional distribution to global joined distribution, to retrieve the global multivariate Gaussian distribution.

Directed GBNs

- 1. Graph triangulation (adds a cord to any cycle above three vertices)
- 2. Hypothesis: from a triangular graph, able to orient the edges and learn the structure of a GBN
- 3. From the factorization of a GBN, learn easily the conditional distribution of each node to its parents

Step 2: build a sparse transcriptomic network GBNs (Gaussian Bayesian networks)

➡ Definition (Bayesian Network (BN))

A Bayesian network is a joint distribution over a set of random variables, defined with :

- a directed acyclic graph (DAG) G whose each node V_i ∈ V depicts a random variable X_i
- a global probability distribution X (with parameters Θ), admitting local factorisation for each variable X_i, depending only on its parents for each node PΠ_{X_i}.

Factorisation of the joint distribution in a BN

$$P(X_1, \cdots, X_n) = \prod_{i=1}^n P(X_i | \Pi_{X_i}) \text{ where } \Pi_{X_i} = \text{ parents of } X_i$$

As we have conditionally probability distribution, such a model respects normalisation constraint : $\sum_{i=1}^{n} P(X_i, \Pi_{X_i}) = 1$. Besides, local distribution for each variable X_i is represented by a CPT.

$$Product of Gaussian distributions$$
$$(X_1, \dots, X_k) \sim \mathcal{N} (\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \left(\sum_{j=1}^J \boldsymbol{\Sigma}_j^{-1}\right)^{-1} \left(\sum_{j=1}^J \boldsymbol{\Sigma}_j^{-1} \boldsymbol{\mu}_j\right) \qquad \boldsymbol{\Sigma} = \left(\sum_{j=1}^J \boldsymbol{\Sigma}_j^{-1}\right)^{-1}$$

 $\begin{array}{c} \textbf{X1} \\ \textbf{X2} \\ \textbf{X1} \\ \textbf{X2} \\ \textbf{X3} \end{array} \qquad \begin{array}{c} \textbf{CD3} \quad \textbf{CD19} \quad \textbf{MHC-II} \\ \textbf{\sigma_1} \quad \textbf{0.5} \quad \textbf{0.8} \\ \textbf{\sigma_2} \quad \textbf{0} \\ \textbf{\sigma_3} \\ \textbf{MHC-II} \end{array} \qquad \begin{array}{c} \textbf{CD3} \\ \textbf{CD3} \\ \textbf{CD3} \\ \textbf{CD3} \\ \textbf{CD3} \\ \textbf{CD3} \\ \textbf{CD19} \\ \textbf{MHC-II} \end{array}$

 $\mathbb{P}(oldsymbol{X}_1,oldsymbol{X}_2,oldsymbol{X}_3)=\mathbb{P}(oldsymbol{X}_1|oldsymbol{X}_2,oldsymbol{X}_3)\mathbb{P}(oldsymbol{X}_3)\mathbb{P}(oldsymbol{X}_2)$

 $egin{aligned} From \ conditional \ to \ joint \ distribution \ X_1 &\sim \mathcal{N}_n \left(oldsymbol{\mu}, \Sigma
ight) & X_2 | X_1 &\sim \mathcal{N}_m \left(Aoldsymbol{\mu} + oldsymbol{b}, \Omega
ight) \ egin{aligned} egin{aligned} X_1 &\sim \mathcal{N}_n \left(oldsymbol{\mu}, \Sigma
ight) & X_2 | X_1 &\sim \mathcal{N}_m \left(Aoldsymbol{\mu} + oldsymbol{b}, \Omega
ight) \ egin{aligned} egin{aligned} egin{aligned} X_1 &\sim \mathcal{N}_n \left(oldsymbol{\mu}, \Sigma
ight) & X_2 | X_1 &\sim \mathcal{N}_m \left(Aoldsymbol{\mu} + oldsymbol{b}, \Omega
ight) \ egin{aligned} egin{aligned} egin{aligned} X_1 &\sim \mathcal{N}_n \left(oldsymbol{\mu} + oldsymbol{b}, \Omega
ight) \ egin{aligned} egin{aligned} egin{aligned} egin{aligned} X_1 &\sim \mathcal{N}_n \left(oldsymbol{\mu} + oldsymbol{b}, \Omega
ight) \ egin{aligned} & \mathcal{N}_n &\in \ egin{aligned} egin{aligned} X_1 \\ egin{aligned} X_1 \\ egin{aligned} X_1 \\ egin{aligned} egin{aligned} egin{aligned} X_1 \\ egin{aligned} egin{aligned$

Estimate cellular ratios Step 3: estimate the cell ratios

Batch effect

 Sequencing method (ssRNA-Seq, RNA-Seq, microarray)

Gene annotation and library

• Normalization (TPM, CPM, raw counts, ...)

Phenotypical conditions

 Heterotopic conditions (highly dependent on the tissue condition)

🔨 Tumoral environments

Poorly described tissues

Cellular distributions

Rare cell types

Model gene distributions
 (truncated and discrete by nature)

illover-effec

 Decorrelation between cell abundance and cell transcriptome

Main challenges to cope with cellular deconvolution

Estimate cellular ratios Main deconvolution categories for cellular ratios estimation

27/10/2022

Estimate the ratios from the reference signature and bulk mixture

Estimate cellular ratios

Bulk expression is computed as the weighted linear average of each purified cellular expression profile.

$$y_{gi} = \sum_{j=1}^{J} x_{gj} p_{ji}$$

algebraic form

matricial form

27/10/2022

Graphical model of the canonical linear regression modelling. The expression of a given gene in each cell population is supposed *fixed* and *independent* from the others.

Graphical model of our multivariate modelling: the observed variables are *stochastic*, and the genes *interplay* together.

Estimate cellular ratios Step 3: estimate the cell ratios

$$\hat{p}_i = \arg\min_{\hat{p}_i} ||\mathbf{X}\hat{p}_i - y_i||^2 \quad \hat{p}_i^{\text{OLS}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}_i \quad \hat{\mathbf{p}}_{\text{MLE}} = \arg\max_{\mathbf{p}} \left(\mathbb{P}_{\mathbf{p}}(y_{1:G}|\mathbf{X}_{1:G,1:J})\right) = \arg\max_{\mathbf{p}} \left(\prod_{g=1}^G \mathbb{P}_{\mathbf{p}}(y_g|\mathbf{x}_{.g})\right)$$

With the Gaussian-Markov assumptions, OLS is the best *BLUE* estimator and equal to the MLE estimate.

$$\ell_{\mathbf{y}|\mathbf{X},\boldsymbol{\Sigma}}(\mathbf{p}) = C + \log\left(\det\left(\sum_{j=1}^{J} p_{j}^{2}\boldsymbol{\Sigma}_{j}\right)^{-1}\right) - \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{p})^{\top} \left(\sum_{j=1}^{J} p_{j}^{2}\boldsymbol{\Sigma}_{j}\right)^{-1} (\mathbf{y} - \mathbf{X}\mathbf{p})$$

Deriving this quantity with *matrix calculus* is computable, but optimizing this quantity is intractable with non convex optimization (two local extrema, only one corresponding to the true MLE)

 $\frac{e^{p_j}}{\sum_{j=1}^{J-1} e^{p_j} + 1}, j < J \square$ Descent-gradient based method to learn the MLE. $\frac{1}{\sum_{j=1}^{J-1} e^{p_j} + 1}, j < J \square$ Parametrization (use of exponentials) to ensure the non-negativity and sum-to-one constraints (to be compared with *Lagrangian multiplier*)

Numerical simulation on artificial datasets

Simulation results with two genes

Numerical simulation on artificial datasets Simulation results with two genes

Same Heatmap representation as in the previous slide

Heatmap of the MSE of the estimated ratios, but using this time the covariance information

Conclusion

Data collection

Poorly described cell populations, full exploitation of Encode and Blueprint datasets

Automatic annotation and description of cellular ontology

Curation

Refine selection of relevant genes:

- Automated method for discarding background noise
- Innovative feature-selection algorithms, using both the differential expression and the covariance structure

Connectivity

Algorithm closer to biological models, accounting for the cotranscriptomic expression between the genes of the purified cell populations

Statistics

Statistical relevance of the estimates, possibly by means of a Bayesian framework.

Transcript distribution

AR1

Use of density functions closer to the gene distribution to model the counts

Environmental variation

Estimation of the impact of external phenotype features

Transcriptomic structure

Sparse transcriptomic network structure, estimated via MLE maximisation with constrained zeros imputed from gLasso

27/10/2022

A special thought to my tutors from Sorbonne University (LPSM, LIP6) for the theoretical background and to Servier for supplying internal data and automated pipeline for the analysis of transcriptomic data.

27/10/2022

References

- B. Panwar *et al.*, "Multi-cell type gene coexpression network analysis reveals coordinated interferon response and cross-cell type correlations in systemic lupus erythematosus," *Genome Res*, vol. 31, no. 4, pp. 659–676, Apr. 2021, doi: 10.1101/gr.265249.120.
- [2] P. Lu, A. Nakorchevskiy, and E. M. Marcotte, "Expression deconvolution: A reinterpretation of DNA microarray data reveals dynamic changes in cell populations," *PNAS*, vol. 100, no. 18, pp. 10370–10375, Sep. 2003, doi: 10.1073/pnas.1832361100.
- [3] G. Quon and Q. Morris, "ISOLATE: A computational strategy for identifying the primary origin of cancers using high-throughput sequencing," *Bioinformatics*, vol. 25, no. 21, pp. 2882–2889, Nov. 2009, doi: 10.1093/bioinformatics/btp378.
- [4] F. Finotello and Z. Trajanoski, "Quantifying tumor-infiltrating immune cells from transcriptomics data," *Cancer Immunol Immunother*, vol. 67, no. 7, pp. 1031–1040, Jul. 2018, doi: 10.1007/s00262-018-2150-z.
- [5] F. Petitprez, C.-M. Sun, L. Lacroix, C. Sautès-Fridman, A. de Reyniès, and W. H. Fridman, "Quantitative Analyses of the Tumor Microenvironment Composition and Orientation in the Era of Precision Medicine," *Front Oncol*, vol. 8, p. 390, 2018, doi: 10.3389/fonc.2018.00390.
- S. S. Shen-Orr *et al.*, "Cell type–specific gene expression differences in complex tissues," *Nat Methods*, vol. 7, no. 4, 4, pp. 287–289, Apr. 2010, doi: 10.1038/nmeth.1439.
- [7] J. E. Shoemaker, T. J. Lopes, S. Ghosh, Y. Matsuoka, Y. Kawaoka, and H. Kitano, "CTen: A web-based platform for identifying enriched cell types from heterogeneous microarray data," *BMC Genomics*, vol. 13, no. 1, p. 460, Sep. 2012, doi: 10.1186/1471-2164-13-460.

Theory and packages

References

- [8] S. S. Shen-Orr and R. Gaujoux, "Computational deconvolution: Extracting cell type-specific information from heterogeneous samples," *Curr Opin Immunol*, vol. 25, no. 5, pp. 571–578, Oct. 2013, doi: 10.1016/j.coi.2013.09.015.
- C. Fa, A.-H. J, P. J, M. P, and D. P. K, "Comprehensive benchmarking of computational deconvolution of transcriptomics data," Jan. 2020, doi: 10.1101/2020.01.10.897116.
- [10] V. C. at channing.harvard.edu>, ontoProc: Processing of ontologies of anatomy, cell lines, and so on. Bioconductor version: Release (3.15), 2022. doi: 10.18129/B9.bioc.ontoProc.
- [11] T. Hart, H. K. Komori, S. LaMere, K. Podshivalova, and D. R. Salomon, "Finding the active genes in deep RNA-seq gene expression studies," *BMC Genomics*, vol. 14, no. 1, p. 778, Nov. 2013, doi: 10.1186/1471-2164-14-778.
- [12] A. Newman et al., "Robust enumeration of cell subsets from tissue expression profiles," Nature methods, vol. 12, Mar. 2015, doi: 10.1038/nmeth.3337.
- [13] J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso," *Biostatistics*, vol. 9, no. 3, pp. 432–441, Jul. 2008, doi: 10.1093/biostatistics/kxm045.
- [14] Y. Zuo et al., "INDEED: Integrated differential expression and differential network analysis of omic data for biomarker discovery," *Methods*, vol. 111, pp. 12–20, Dec. 2016, doi: 10.1016/j.ymeth.2016.08.015.
- Z. Gu, ComplexHeatmap: Make Complex Heatmaps. Bioconductor version: Release (3.15), 2022. doi: 10.18129/B9.bioc.ComplexHeatmap.

Theory and packages

References

- [16] J. M. Fernández et al., "The BLUEPRINT Data Analysis Portal," Cell Syst, vol. 3, no. 5, pp. 491–495.e5, Nov. 2016, doi: 10.1016/j.cels.2016.10.021.
- [17] S. Chevrier *et al.*, "An Immune Atlas of Clear Cell Renal Cell Carcinoma," *Cell*, vol. 169, no. 4, pp. 736–749.e18, May 2017, doi: 10.1016/j.cell.2017.04.016.
- [18] ENCODE Project Consortium, "An integrated encyclopedia of DNA elements in the human genome," Nature, vol. 489, no. 7414, pp. 57–74, Sep. 2012, doi: 10.1038/nature11247.
- [19] G. Monaco *et al.*, "RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types," *Cell Reports*, vol. 26, no. 6, pp. 1627–1640.e7, Feb. 2019, doi: 10.1016/j.celrep.2019.01.041.
- [20] K. Kim *et al.*, "Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis," *Brain*, vol. 144, no. 2, pp. 450–461, Mar. 2021, doi: 10.1093/brain/awaa421.
- [21] P. S. Linsley, C. Speake, E. Whalen, and D. Chaussabel, "Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis," *PLoS One*, vol. 9, no. 10, p. e109760, 2014, doi: 10.1371/journal.pone.0109760.

