Analysis of CRISPR-Cas9 screens

Pierre Gestraud

1

CRISPR-Cas9

- **Cas9** (CRISPR associated protein 9) is a protein of bacterial origin (e.g. *Streptococcus pyogenes*) implicated in anti-vrial response
- **CRISPR** (Clustered Regularly Interspaced Short Palindromic Repeats)

Genome editing

• Create double-strand breaks in DNA which induce gene inactivation or insertion of precise sequence based on DNA repair mecanism

Genome editing with CRISPR-Cas9

- Designed by Emmanuelle Charpentier & Jennifer Doudna
- Efficient and precise technique to edit genome
- gRNA contains a 20bp sequence specific of the target

Inactivation vs inhibition

- CRISPR/Cas9
- Gene inactivation
- Knock-out

- CRISPRi/Cas9
- Gene inhibition
- Knock-down

• Also activation with CRISPRa/Cas9

Genome-wide genetic screens

- Editing the genome at a single position in a set of cells if good but...
- What if we can induce one different gene inactivation in every cell?
- Idea: create a library of sgRNA to infect a cell population

Screen workflow

Doench, Nature review 2017

sgRNA librairies

- Genome-wide librairies of plasmides commercially avalaible (Brunello, Sabatini, Gattinara...) or custom librairies for secondary screens
- Several sgRNAs by gene (4 to 10) -> between 80k and 120k guides for genome-wide screen

Cells infection and selection

- Cell lines with constitutive Cas9 expression
- Transduction at low infection efficiency (30%)
 - most cells have at most 1 sgRNA
 - avoid multiple transductions
- Selection of infected cells (Purmomycin resistant, GFP...)
- Growth in challenging environment
- DNA sequencing to identify the guides inserted

What are we looking at?

- We want to compare 2 (or more) cell populations -> differential analysis
- Often one reference population and one selected population

Screen types

- Negative: find depleted genes
 - genes that lead to cell death when inactivated
- **Positive**: find **enriched** genes
 - cells are submitted to selection pressure
 - genes allowing escaping selection pressure when inactivated

Synthetic lethality

- Cell line with one deficient gene
- Find which genes conduct to cell death with 2 KO genes

• Several time points and often several cell lines

Resistance to treatment

- Identify genes implicated in treatment:
 - resistance
 - sensitivity
- Negative or positive screen

Cell sorting

- Cells are sorted by FACS depending on their phenotypes
- Find genes implicated in the differentiation

Migration

• Genes implicated in cell migration

Several cell lines or conditions

• Comparisons to reference

• Direct comparisons

• Direct comparison can be biased if the cell lines have different growth rates

Controls

- Non-targeting guides
 - sgRNA with no target on the genome -> should have no effect
 - e.g. 1000 non-targeting guides
- Essential and non-essential genes
 - Lists of genes established on several cell lines (Wang *et al*, 2015 Science)

Counting

- How to count reads after sequencing?
- No need of traditional mapping
- Dedicated python script to scan each read and find the guide (Marc Deloger) + Nextflow pipeline + MultiQC output

CTTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAGTTTTAG ACGCAACTTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAG TGCACCTTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAGT AGCTTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAGTTTT ACGCAACTTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAG TTGTGGAAAGGACGAAACACCGCTTCATTTCCCAGCCACCAAGTTTTAGA

Data

- Counts matrix
- One row by sgRNA
- Counts represent the number of cells with the sgRNA included

	sgRNA	gene	D115R08	D115R09	D115R10	D115R11	D115R12	D115R13	D115R14
1	sgA1BG_1	A1BG	39	28	229	170	140	497	437
2	sgA1BG_10	A1BG	710	190	120	309	435	454	491
3	sgA1BG_2	A1BG	925	278	73	770	362	466	68
4	sgA1BG_3	A1BG	9	114	1	13	49	12	80
5	sgA1BG_4	A1BG	930	244	116	197	260	14	19
6	sgA1BG_5	A1BG	16	53	285	435	143	778	55
7	sgA1BG_6	A1BG	68	129	75	373	343	4	15
8	sgA1BG_7	A1BG	248	220	147	547	177	395	9
9	sgA1BG_8	A1BG	195	115	38	398	162	621	278
10	sgA1BG_9	A1BG	56	54	2	80	151	2	357
11	sgA1CF_1	Alcf	430	134	382	325	396	13	870
12	sgAlCF_10	Alcf	100	95	4	128	150	5	3
13	sgA1CF_2	Alcf	836	165	201	327	397	494	851
14	sgA1CF_3	Alcf	658	223	109	780	225	171	572
15	sgAlCF_4	Alcf	222	47	13	117	252	2	8
16	sgA1CF_5	Alcf	1255	876	685	1967	1376	1874	3263
17	sgA1CF_6	Alcf	2	0	5	153	2	1	4
18	saA1CF ⁷	Alcf	30	76	8	61	178	2	1022

Quality control

- Use controls to estimate screen efficiency
 - We should see a depletion for essential genes (at least)
- Distribution of guides by samples for non-targeting, essential and nonessentials
- ROC curves

Guides distribution

• Distributions of log-cpm according to sgRNA type

Guides distribution

• Distributions of log FC to reference sample (first time point or library)

ROC curves

- Construct ROC curves by setting:
 - essential as "+"
 - non-essential and non-targeting as "-"
- Order guides by cpm
- "+" should be ranked before "-"
- Curve on the diagonal -> no selection
- Too much selection -> no distinction between essential and non-essential

ROC curves

Normalisation

- How to normalise?
- TMM with normalisation factors computed on:
 - all the guides
 - the non-targeting guides
- cpm

Guides distribution

• Distributions of normalised cpm

Analysis workflow

- How to analyse such data?
- We can do the analysis for guides but we want results for genes
- Merge all guides from same gene and work as for RNAseq?
 - guides have different efficiency
 - some are without effect
- Need dedicated workflow
- Analysis in 2 steps:
 - **Guide level**: find the enriched/depleted guides
 - Gene level: aggregate the guide results by gene

Guide level analysis

- limma/voom framework
- Often good to include replicate effect in the model

~ time_point:cell_line + replicate

- From the final t statistics, we compute 3 different pvalues:
 - bilateral
 - unilateral for depletion
 - unliateral for enrichment

```
tab <- biobroom::tidy.MArrayLM(object)
tab$p.value_dep <- pt(tab$statistic, df = object$df.total[1], lower.tail = TRUE)
tab$p.value_enrich <- pt(tab$statistic, df = object$df.total[1], lower.tail = FALSE)</pre>
```

Gene level analysis

• For each gene, we now have 4 to 10 p-values

#	A tibble: 1	0 × 12					
#	Groups: G	ene [2]					
	sgRNA	estimate	statistic	p.value	p.value_dep	p.value_enrich	adj_p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	sgACTR1A 1	-1.84	-3.52	0.00148	0.000740	0.999	0.0147
2	sgACTR1A_2	-1.50	-3.52	0.00147	0.000735	0.999	0.0147
3	sgACTR1A 3	-1.28	-1.50	0.146	0.0729	0.927	0.312
4	sgACTR1A 4	-1.22	-2.40	0.0230	0.0115	0.988	0.0877
5	sgACTR1A 5	-0.705	-0.703	0.488	0.244	0.756	0.681
6	sgACTR1A_6	-0.772	-2.32	0.0277	0.0139	0.986	0.100
7	sgALG1 1	-0.463	-0.964	0.343	0.172	0.828	0.552
8	sgALG1 ²	-0.891	-1.81	0.0816	0.0408	0.959	0.211
9	sgALG1 3	-0.779	-1.48	0.150	0.0751	0.925	0.319
10	sgALG1 ⁴	-1.19	-2.58	0.0151	0.00757	0.992	0.0660
#	with 5 mo	re variabl	les: adj p	.value de	ep <dbl>, ad</dbl>	j p.value enrich	n <dbl>,</dbl>
#	Gene <chr< td=""><td>>, sequenc</td><td>ce <chr>, i</chr></td><td>n <int></int></td><td></td><td></td><td></td></chr<>	>, sequenc	ce <chr>, i</chr>	n <int></int>			

Gene level analysis

- The guides are not all effective
- How to aggregate p-values?
 - "Pragmatic approach": keep the genes with at least k significantly depleted/enriched guides
 - Fisher's method
 - RRA

Robust Rank Aggregation

- Designed for shRNA screen
- Implemented in Mageck
- Use properties of order statistics (the kth order statistic of a statistical sample is equal to its kth-smallest value)
- Order statistics from a uniform distribution between 0 and 1 have marginal distribution following a Beta. The k^{th} value among n uniformly distributed values:

$$U_{(k)} \sim Beta(k,n+1-k)$$

Rationale:

• If a gene has no effect, its p-values follow a uniform distribution

Robust Rank Aggregation

Distributions of order statistics from U(0, 1):

RRA - score for each gene

For each gene:

- Order the n guides by pvalue (p_i)
- Compute the score c_i for each guide i

$$c_i = P(Beta(i, n+1-i) < p_i)$$

- Compute a score for the gene:

$$s_g = min(c_i)$$

RRA - score for each gene

- We compute 3 scores for each gene:
 - overall
 - depletion
 - enrichment
- α -RRA modification: We only consider pvalues lower than α (others are set to 1)
 - e.g. $\alpha = 0.2$
- Number of guides supporting the score

RRA - pvalue for each gene

- Create null distribution of RRA scores from random genes
- Random genes defined as set of guides picked from:
 - all guides
 - non targeting guides

Gene results

A tibble: 10 × 13

	Gene	RRA_dep_score	RRA_dep_which	RRA_dep_pvalue	RRA_dep_adjp	RRA_score
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	DGCR8	4.55e-23	8	0	0	1.16e-20
2	EFTUD2	9.68e-23	7	0	0	1.24e-20
3	EEFSEC	4.04e-22	10	0	0	4.14e-19
4	CCT3	6.82e-22	8	0	0	1.74e-19
5	DARS	3.53e-21	6	0	0	2.26e-19
6	LRR1	3.64e-21	9	0	0	1.86e-18
7	EIF2S1	1.87e-20	6	0	0	1.20e-18
8	POLR2A	2.03e-20	7	0	0	2.59e-18
9	INTS9	2.27e-20	7	0	0	2.90e-18
10	DYNC1H1	2.45e-20	7	0	0	3.12e-18
				11 1	. 11 7 .	

... with 7 more variables: RRA_which <dbl>, RRA_enrich_score <dbl>,

RRA_enrich_which <dbl>, RRA_pvalue <dbl>, RRA_enrich_pvalue <dbl>,

RRA_adjp <dbl>, RRA_enrich_adjp <dbl>

Next steps

- Functional analysis on significant genes
 - GO/KEGG/Reactome enrichment
- Secondary screen on limited set of genes (some 100s)
 - Design custom library
 - Less cells required
 - Include controls (positive, negative, non-targeting)

Current/Future developments

- Double-guide library
 - Each cell will have 2 inactivated genes
 - Pairs fixed or random
- In-vivo screening in PDX
- Secondary library design
 - Select a set of guides among several commercial libraries
- Convince the facility to perform more replicates

Acknowlegments

CRISPR'it core facility (UMR3215/U934)

- Aurélien Bore
- Michel Wassef
- Raphaël Margueron
- Camille Fouassier

CUBIC - Bioinformatics core facility (U900)

- Nicolas Servant
- Marc Deloger
- Clément Benoit