A Phylogenetic Framework to Simulate Synthetic Inter-species RNA-Seq Data

Paul Bastide¹, Charlotte Soneson^{2,3}, David B. Stern^{4,5}, Olivier Lespinet⁶, and Mélina Gallopin⁶

- ¹ IMAG, Université de Montpellier, CNRS
- ² Friedrich Miescher Institute for Biomedical Research, Basel
- ³ SIB Swiss Institute of Bioinformatics, Basel
- ⁴ Department of Integrative Biology, University of Wisconsin-Madison
- ⁵ National Biodefense Analysis and Countermeasures Center (NBACC), Fort Detrick
- ⁶ I2BC, Université Paris-Saclay, CEA, CNRS

StatOmique, October 2022

Vision Loss in the Crayfish Familly

(Stern and Crandall, 2018)

Stern and Crandall (2018)

PB. CS. DBS. OL. MG

Inter-species RNA-Seq

Evolution of gene expression underlying vision loss ?

Orconectes australis

Cambarus dubius

Outline

1 DE for Inter-Species RNA-Seq Data

- DE for RNA-Seq Data
- Phylogenetic Comparative Methods
- DE for Inter-species RNA-Seq Data

2 Simulation Framework

- From NB to PLN
- Phylogenetic PLN
- Simulation Setting
- 8 Results
 - Simulations
 - Crayfish Data

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Differential Expression Analysis for RNA-seq Data

Gene expression matrix:

	condition A			condition B		
	r1	r2	r3	r1	r2	r3
gene 1						
gene 2]					

Observations:

counts y_{gi} : expression level for gene g and sample i ($p \times n$)

Question:

Find genes g differentially expressed between conditions A and B ?

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

GLM Modelling Counts : DESeq2

(Love et al., 2014)

$$egin{aligned} &Y_{gi} \sim \mathsf{NB}(\mu_{gi}, lpha_g) \ &\mu_{gi} = s_i q_{gi} \ &\log_2(q_{gi}) = \mathbf{X}_i.oldsymbol{ heta}_g \end{aligned}$$

- Y_{gi} : counts $(p \times n)$
- α_g : dispersion
- s_i : size factor
- q_{gi} : proportional to expected true concentration
- X : design matrix $(n \times q)$
- θ_g : log₂ fold changes (q imes 1)

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Linear Model on Normalized Data : limma

(Smyth, 2004)

$$\mathbf{\tilde{Y}}_{g} = \mathbf{X} \boldsymbol{\theta}_{g} + \mathbf{E}_{g} \qquad \mathbf{E}_{g} \sim \mathcal{N}(\mathbf{0}, \sigma_{g}^{2} \mathbf{I}_{n})$$

- $\tilde{\mathbf{Y}}_g$: normalized data for gene g $(n \times 1)$
- σ_g^2 : (moderated) gene specific variance

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Linear Model on Normalized Data : limma

(Smyth, 2004)

$$\mathbf{\tilde{Y}}_{g} = \mathbf{X} \boldsymbol{\theta}_{g} + \mathbf{E}_{g} \qquad \mathbf{E}_{g} \sim \mathcal{N} ig(\mathbf{0}, \sigma_{g}^{2} \mathbf{I}_{n} ig)$$

- $\tilde{\mathbf{Y}}_g$: normalized data for gene g (n imes 1)
- σ_g^2 : (moderated) gene specific variance

 $\log_2 \text{CPM}$

$$ilde{Y}_{gi} = \log_2\left[rac{Y_{gi}+0.5}{M_i+1} imes 10^6
ight] \qquad M_i = \sum_g Y_{gi}m_i$$

- *M_i* the normalized library size
- *m_i* a normalization factor [using eg RLE or TMM]

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seg Data

Phylogenetic Comparative Methods

PB, CS, DBS, OL, MG

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Phylogenetic Comparative Methods

DE for Inter-Species RNA-Seq Data DE for RN Simulation Framework Phylogenet Results DE for Inte

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Phylogenetic Comparative Methods

DE for Inter-Species RNA-Seq Data DE for Simulation Framework Phylog Results DE for

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Phylogenetic Comparative Methods

PB, CS, DBS, OL, MG Inter-species RNA-Seq

DE for Inter-Species RNA-Seq Data Simulation Framework Results DE for Inter-Species RNA-Seq Data

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Phylogenetic Comparative Methods

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Brownian Motion on a Tree

(Felsenstein, 1985)

- The trait evolves like a BM in time
- Speciation \rightarrow two independent processes
- Only tip values are measured

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Brownian Motion on a Tree

(Felsenstein, 1985)

- SDE: $dX_t = \sigma dB_t$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Brownian Motion on a Tree

(Felsenstein, 1985)

- SDE: $dX_t = \sigma dB_t$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

PB, CS, DBS, OL, MG

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

PB, CS, DBS, OL, MG Inter-species RNA-Seq

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \sigma\mathbf{E}$

- Y traits at the tips (n)
- **X** design matrix $(n \times q)$
- θ vector of coefficients (q)
- **E** phylogenetic errors (*n*)

 $\textbf{E} \sim \mathcal{N}(\textbf{0}_n,\textbf{V})$

 $\boldsymbol{\mathsf{V}}$ informed by the tree structure

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \sigma\mathbf{E}$

- Y traits at the tips (n)
- **X** design matrix $(n \times q)$
- θ vector of coefficients (q)
- **E** phylogenetic errors (*n*)

$$\mathsf{E} \sim \mathcal{N}(\mathbf{0}_n, \mathsf{V}(\phi))$$

 $\mathbf{V}(\phi)$ informed by the tree and the trait model

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Ornstein-Uhlenbeck

$$dX_t = \alpha [\beta - X_t] dt + \sigma dB_t$$

Deterministic part:

- β : primary optimum (mechanistically defined).
- $\ln(2)/\alpha$: phylogenetic half live.

Stochastic part:

- X_t: trait value (actual optimum).
- $\sigma dB(t)$: Brownian fluctuations.

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Ornstein-Uhlenbeck on a Tree

- SDE: $dX_t = \alpha [\beta X_t] dt + \sigma dB_t$
- Covariances: $\mathbb{C}ov[Y_i; Y_j] = \frac{\sigma^2}{2\alpha} e^{-\alpha(V_i + V_j)} (e^{2\alpha V_{ij}} 1)$
- Bounded variance $\gamma^2 = \frac{\sigma^2}{2\alpha}$
- Stationary state, Stabilizing selection

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Early Burst

(Harmon et al., 2010)

• SDE: $dX_t = \sigma_0 e^{rt/2} dB_t$

• Covariances: $\mathbb{C}ov[Y_i; Y_j] = \sigma_0^2 \frac{e^{rV_{ij}} - 1}{r}$

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Multiple Observations

- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Multiple Observations

- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$

DE for RNA-Seq Data **Phylogenetic Comparative Methods** DE for Inter-species RNA-Seq Data

Multiple Observations

- Observation: $Y_1|Z_1 \sim \mathcal{N}(Z_1, \sigma_e^2)$
- Covariances: $\mathbb{C}ov(Y_i, Y_j) = \sigma^2 V_{ij} + \sigma_e^2 \delta_{ij}$
- Distribution: $\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V} + \sigma_e^2 \mathbf{I}_n)$

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\theta} + \sigma \mathbf{E} \quad \mathbf{E} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{V}(\boldsymbol{\phi}))$$

BM:
$$V_{ij} = t_{ij}$$
 errors: $V(\phi)_{ij} = t_{ij} + \phi h$
EB: $V(r)_{ij} = \frac{e^{rV_{ij}} - 1}{r}$ OU: $V(\alpha)_{ij} = e^{-\alpha(V_i + V_j)} \frac{e^{2\alpha V_{ij}} - 1}{2\alpha}$

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Phylogenetic ANOVA

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\theta} + \sigma \mathbf{E} \quad \mathbf{E} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{V}(\boldsymbol{\phi}))$$

BM:
$$V_{ij} = t_{ij}$$
 errors: $V(\phi)_{ij} = t_{ij} + \phi h$
EB: $V(r)_{ij} = \frac{e^{rV_{ij}} - 1}{r}$ OU: $V(\alpha)_{ij} = e^{-\alpha(V_i + V_j)} \frac{e^{2\alpha V_{ij}} - 1}{2\alpha}$

Estimators:

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^{T} \mathbf{V}(\hat{\boldsymbol{\phi}})^{-1} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{V}(\hat{\boldsymbol{\phi}})^{-1} \mathbf{Y}$$
$$\hat{\sigma}^{2} = \frac{1}{n-p} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\theta}})^{T} \mathbf{V}(\hat{\boldsymbol{\phi}})^{-1} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\theta}}) = \frac{1}{n-p} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\theta}}\|_{\mathbf{V}(\hat{\boldsymbol{\phi}})^{-1}}^{2}$$

 $\hat{\phi}$ numerical maximization

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Orthologous Genes

• Find Orthologous Genes Inparanoid, MaRiO, OrthoFinder, ...

see Tekaia (2016)

- No reference genome
- Keep only one-to-one
- Length matters

DE for Inter-Species RNA-Seq Data	DE for RNA-Seq Data
Simulation Framework	Phylogenetic Comparative Methods
Results	DE for Inter-species RNA-Seq Data

Toy Example for the OG Matrix

Species A Acontig1 Acontig2 Acontig3	A Asample 1 7 13	e1 Asample 2 8 14	2	OG { <i>Acc</i> OG { <i>Acc</i>	1: ontig1, Bcont 2: ontig2, Acont 3:	ig1, Ccontig ig3, Bcontig	1} 2, <i>Ccontig</i> 2}
Species I Bcontig1 Bcontig2 Bcontig3	B Bsample 3 9 15	e1 Bsample 4 0 16	2	{Bcc	ontig3, Ccont	ig3}	
Species (C Csample	1 Csample	2				
Ccontig1	5	6					
Ccontig2	11	12					
Ccontig3	17	18					
	Asample1	Asample2	Bsai	nple1	Bsample2	Csample1	Csample2
OG 1	1	2	3		4	5	6
OG 2	7+13	8+14	9		0	11	12
OG 3	Ø	Ø	15		16	17	18
PB, CS, DBS, OL, MG Inter-species RNA-Seq 17/42							

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

DESeq2 with Lengths

(Love et al., 2014)

$$egin{aligned} Y_{gi} &\sim \mathsf{NB}(\mu_{gi}, lpha_g) \ \mu_{gi} &= c_{gi}q_{gi} \ \mathrm{og}_2(q_{gi}) &= \mathbf{X}_i.oldsymbol{ heta}_g \end{aligned}$$

Normalisation factor: c_{gi} depends on OG length ℓ_{gi} .

$$c_{gi} = \frac{s_i \ell_{gi}}{\exp(\frac{1}{n} \sum_{i=1}^n \log(s_i \ell_{gi}))}$$

(from the DESeq2 tutorial)

Used in: Torres-Oliva et al. (2016)

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Normalization with Lengths

CPM:

$$\mathsf{CPM}_{gi} = rac{Y_{gi}}{M_i/10^6}$$
 $M_i = \sum_g Y_{gi} m_i$

RPKM:

(Mortazavi et al., 2008)

$$\mathsf{RPKM}_{gi} = rac{Y_{gi}}{M_i/10^6 imes \ell_{gi}/10^3}$$

TPM:

(Wagner et al., 2012)

$$\mathsf{TPM}_{gi} = rac{Y_{gi}/\ell_{gi}}{\sum_g Y_{gi}/\ell_{gi}/10^6}$$

TPM over genes sum to a constant (Musser and Wagner, 2015)

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Normalization with lengths

In the inter-species litterature:

- log₂(CPM): Blake et al. (2018)
- log₂(RPKM): Mortazavi et al. (2008); Brawand et al. (2011); Catalán et al. (2019)
- log₁₀(TPM): Chen et al. (2019)
- $\sqrt{\mathsf{TPM}}$:

Musser and Wagner (2015); Stern and Crandall (2018)

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

limma with duplicateCorrelation (Smyth et al., 2005)

$$\mathbf{\tilde{Y}}_{g} = \mathbf{X} \boldsymbol{ heta}_{g} + \mathbf{E}_{g} \qquad \mathbf{E}_{g} \sim \mathcal{N}ig(\mathbf{0}, \sigma_{g}^{2}\mathbf{C}ig)$$

- $\tilde{\mathbf{Y}}_g$: normalized data for gene g $(n \times 1)$
- σ_g^2 : (moderated) gene specific variance
- C : (shared) correlation matrix
DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

limma with duplicateCorrelation (Smyth et al., 2005)

$$\mathbf{\tilde{Y}}_{g} = \mathbf{X} \boldsymbol{ heta}_{g} + \mathbf{E}_{g} \qquad \mathbf{E}_{g} \sim \mathcal{N}ig(\mathbf{0}, \sigma_{g}^{2}\mathbf{C}ig)$$

- $\tilde{\mathbf{Y}}_g$: normalized data for gene g (n imes 1)
- σ_g^2 : (moderated) gene specific variance
- C : (shared) correlation matrix

$$\mathbb{C}\mathrm{or}\left[\tilde{Y}_{gi};\tilde{Y}_{gj}\right] = C_{ij} = \begin{cases} \rho \\ 0 \end{cases}$$

if *i* and *j* are the same species otherwise

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

phylolm: Phylogenetic ANOVA

(Ho and Ané, 2014)

$$\mathbf{ ilde{Y}}_{g} = \mathbf{X} oldsymbol{ heta}_{g} + \mathbf{E}_{g} \qquad \mathbf{E}_{g} \sim \mathcal{N}ig(\mathbf{0}, \sigma_{g}^{2} \mathbf{V}(\phi_{g})ig)$$

- $\tilde{\mathbf{Y}}_g$: normalized data for gene g (n imes 1)
- σ_g^2 : gene specific variance
- $\tilde{\mathbf{V}}(\phi_g)$: tree correlation matrix

BM:
$$V_{ij} = t_{ij}$$
 errors: $V(\phi_g)_{ij} = t_{ij} + \phi_g h$
AC/DC: $V(r_g)_{ij} = \frac{e^{r_g V_{ij}} - 1}{r_g}$ OU: $V(\alpha_g)_{ij} = e^{-\alpha_g (V_i + V_j)} \frac{e^{2\alpha_g V_{ij}} - 1}{2\alpha_g}$

Used in:

Brawand et al. (2011); Rohlfs et al. (2014); Rohlfs and Nielsen (2015); Stern and Crandall (2018); Catalán et al. (2019); Chen et al. (2019)

DE for RNA-Seq Data Phylogenetic Comparative Methods DE for Inter-species RNA-Seq Data

Summary: Methods for DE Across Species

	models	requires	shares information	takes phylogeny
	counts	transformation	across genes	into account
NB-based model	VOC	20	VOS	no
(DESeq)	yes	110	yes	110
Linear model	no	NOS	Voc	partly
(limma)	no	yes	yes	partiy
Phylogenetic				
Regression	no	yes	no	yes
(phylolm)				

Question: Which method performs best ?

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model

(Robinson and Oshlack, 2010)

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g)$$

• Y_{gi} : observed expression

• α_{g} : dispersion

gene g, sample i

gene g

١

One Species Model

(Robinson and Oshlack, 2010)

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g)$$

• Y_{gi} : observed expression gene g, sample i • α_g : dispersion gene g • λ_{gi} : true expression gene g, sample i • M_i : sampling depth sample i

$$\mu_{gi} = \frac{\lambda_{gi}}{\sum_{h=1}^{p} \lambda_{hi}} M_i$$

١

One Species Model

(Robinson and Oshlack, 2010)

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g)$$

- Y_{gi} : observed expression gene g, sample i • α_{g} : dispersion gene g • λ_{gi} : true expression gene g, sample i • M_i : sampling depth sample *i*
- ℓ_{g} : gene length

- - - gene g

$$\mu_{gi} = \frac{\lambda_{gi}\ell_g}{\sum_{h=1}^p \lambda_{hi}\ell_h} M_i.$$

One Species Model

(Robinson and Oshlack, 2010)

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g)$$

- S_1 , S_2 : groups for differential expression

$$\mu_{gi} = \frac{\lambda_{gi}\ell_g}{\sum_{h=1}^p \lambda_{hi}\ell_h} M_i \qquad \lambda_{gi} = \begin{cases} \lambda_{gS_1} & \text{if } i \in S_1 \\ \lambda_{gS_2} & \text{if } i \in S_2 \end{cases}$$

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - Simulation

(Soneson and Delorenzi, 2013)

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g) \quad \mu_{gi} = \frac{\lambda_{gi}\ell_g}{\sum_{h=1}^p \lambda_{hi}\ell_h} M_i \quad \lambda_{gi} = \begin{cases} \lambda_{gS_1} & \text{if } i \in S_1 \\ \lambda_{gS_2} & \text{if } i \in S_2 \end{cases}$$

DE for Inter-Species RNA-Seq Data Simulation Framework Results Simulation Setting

One Species Model - Simulation

(Soneson and Delorenzi, 2013)

.

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g) \quad \mu_{gi} = \frac{\lambda_{gi}\ell_g}{\sum_{h=1}^{p} \lambda_{hi}\ell_h} M_i \quad \lambda_{gi} = \begin{cases} \lambda_{gS_1} & \text{if } i \in S_1 \\ \lambda_{gS_2} & \text{if } i \in S_2 \end{cases}$$

•
$$\lambda_{gS_2} = \begin{cases} \lambda_{gS_1} & \text{if } g \text{ not DE}; \\ \lambda_{gS_1} \times (e + X_g^e) & \text{if } g \text{ up-regulated in } S_2; \\ \lambda_{gS_1} \times (e + X_g^e)^{-1} & \text{if } g \text{ down-regulated in } S_2. \end{cases}$$

• $X_g^e \sim \mathcal{E}(1) \text{ iid }$

• e effect size

DE for Inter-Species RNA-Seq Data From Simulation Framework Phylo Results Simu

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - Simulation

(Soneson and Delorenzi, 2013)

.

$$Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g) \quad \mu_{gi} = \frac{\lambda_{gi}\ell_g}{\sum_{h=1}^{p} \lambda_{hi}\ell_h} M_i \quad \lambda_{gi} = \begin{cases} \lambda_{gS_1} & \text{if } i \in S_1 \\ \lambda_{gS_2} & \text{if } i \in S_2 \end{cases}$$

•
$$\lambda_{gS_2} = \begin{cases} \lambda_{gS_1} & \text{if } g \text{ not DE}; \\ \lambda_{gS_1} \times (e + X_g^e) & \text{if } g \text{ up-regulated in } S_2; \\ \lambda_{gS_1} \times (e + X_g^e)^{-1} & \text{if } g \text{ down-regulated in } S_2. \end{cases}$$

- $X_g^e \sim \mathcal{E}(1)$ iid
- e effect size
- ℓ_g known
- $M_i \sim \mathcal{U}(m, M)$
- λ_{gS_1} , m, M, α_g calibrated from empirical data.

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - From NB to PLN

(Chen et al., 2014)

NB Model:

 $Y_{gi} \sim \mathsf{NB}(\mu_{gi}, \alpha_g)$

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g};lpha_{g}\mu_{gi}) \ & Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}) \end{aligned}$

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Variance:

$$\mathbb{V}$$
ar $[Y_{gi}] = \mu_{gi} + \alpha_g \mu_{gi}^2$

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}ig) \end{aligned}$

Variance:

$$\mathbb{V}\mathrm{ar}\left[Y_{gi}\right] = \mu_{gi} + \alpha_g \mu_{gi}^2$$

$$\mathsf{CV}(Y_{gi})^2 = rac{\mathbb{V}\mathrm{ar}\left[Y_{gi}
ight]^2}{\mathbb{E}\left[Y_{gi}
ight]^2}$$

From NB to PLN Phylogenetic PLN Simulation Setting

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}ig) \end{aligned}$

Variance:

$$\mathbb{V}ar[Y_{gi}] = \mu_{gi} + \alpha_g \mu_{gi}^2$$

$$\mathsf{CV}(Y_{gi})^2 = rac{1}{\mathbb{E}\left[Z_{gi}
ight]} + \mathsf{CV}(Z_{gi})^2$$

١

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g};lpha_{g}\mu_{gi}) \ & Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Poisson-Log-Normal Model:

$$Z_{gi} \sim \text{Log-Normal}(m_{gi}; \sigma_g^2)$$

 $Z_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}).$

Variance:

$$\mathbb{V}$$
ar $[Y_{gi}] = \mu_{gi} + \alpha_g \mu_{gi}^2$

$$\mathsf{CV}(Y_{gi})^2 = rac{1}{\mathbb{E}\left[Z_{gi}
ight]} + \mathsf{CV}(Z_{gi})^2$$

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g};lpha_{g}\mu_{gi}) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Variance:

$$\mathbb{V}ar[Y_{gi}] = \mu_{gi} + \alpha_g \mu_{gi}^2$$

Coefficient of Variation:

$$\mathsf{CV}(Y_{gi})^2 = rac{1}{\mathbb{E}\left[Z_{gi}
ight]} + \mathsf{CV}(Z_{gi})^2$$

Poisson-Log-Normal Model:

$$Z_{gi} \sim ext{Log-Normal}(m_{gi}; \sigma_g^2)$$

 $Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi})$.

Variance:

$$\mathbb{V}$$
ar $[Y_{gi}] = \mathbb{E}\left[Z_{gi}
ight] + (e^{\sigma_g^2} - 1)\mathbb{E}\left[Z_{gi}
ight]^2$

One Species Model - From NB to PLN

(Chen et al., 2014)

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g};lpha_{g}\mu_{gi}) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Variance:

$$\mathbb{V}ar[Y_{gi}] = \mu_{gi} + \alpha_g \mu_{gi}^2$$

Coefficient of Variation:

$$\mathsf{CV}(Y_{gi})^2 = rac{1}{\mathbb{E}\left[Z_{gi}
ight]} + \mathsf{CV}(Z_{gi})^2$$

Poisson-Log-Normal Model:

 $Z_{gi} \sim \text{Log-Normal}(m_{gi}; \sigma_g^2)$ $Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi})$.

Variance:

$$\mathbb{V}$$
ar $[Y_{gi}] = \mathbb{E}[Z_{gi}] + (e^{\sigma_g^2} - 1)\mathbb{E}[Z_{gi}]^2$

$$\mathsf{CV}(Y_{gi})^2 = rac{1}{\mathbb{E}\left[Z_{gi}
ight]} + \mathsf{CV}(Z_{gi})^2$$

One Species Model - From NB to PLN - Moments

Poisson-Gamma Model:

Poisson-Log-Normal Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}ig(Z_{gi}ig) \end{aligned}$

 $egin{aligned} & Z_{gi} \sim ext{Log-Normal}(m_{gi}; \sigma_g^2) \ & Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi}) \,. \end{aligned}$

Matching Moments:

$$\left\{ egin{array}{l} \sigma_g^2 = \log(1+lpha_g) \ m_{gi} = \log(\mu_{gi}) - rac{1}{2}\log(1+lpha_g). \end{array}
ight.$$

One Species Model - From NB to PLN - Moments

Poisson-Gamma Model:

Poisson-Log-Normal Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}ig(Z_{gi}ig) \end{aligned}$

 $Z_{gi} \sim ext{Log-Normal}(m_{gi}; \sigma_g^2)$ $Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi})$.

Matching Moments:

$$\left\{ egin{array}{l} \sigma_g^2 = \log(1+lpha_g) \ m_{gi} = \log(\mu_{gi}) - rac{1}{2}\log(1+lpha_g). \end{array}
ight.$$

Realistic Simulations:

Use the same parameters as the NB model.

Inter-Species Model: pPLN

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g};lpha_{g}\mu_{gi}) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Poisson-Log-Normal Model:

 $Z_{gi} \sim ext{Log-Normal}(m_{gi}; \sigma_g^2)$ $Y_{gi} \mid Z_{gi} \sim \mathcal{P}(Z_{gi})$.

Inter-Species Model: pPLN

Poisson-Gamma Model:

 $egin{aligned} & Z_{gi} \sim \mathsf{Gamma}(1/lpha_{g}; lpha_{g} \mu_{gi}) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}) \end{aligned}$

Phylogenetic PLN Model:

$$egin{aligned} \mathbf{Z}_g &\sim \mathcal{N}ig(\mathbf{m}_g, \sigma_g^2 \mathbf{V}(\phi)ig) \ Y_{gi} \mid Z_{gi} &\sim \mathcal{P}(\exp(Z_{gi})ig) \,. \end{aligned}$$

Inter-Species Model: pPLN

Poisson-Gamma Model:

$$egin{aligned} & Z_{gi} \sim \mathsf{Gamma}ig(1/lpha_{g};lpha_{g}\mu_{gi}ig) \ & Y_{gi} \mid Z_{gi} \, \sim \mathcal{P}(Z_{gi}ig) \end{aligned}$$

Phylogenetic PLN Model:

$$\mathbf{Z}_{g} \sim \mathcal{N}(\mathbf{m}_{g}, \sigma_{g}^{2}\mathbf{V}(\phi))$$

 $Y_{gi} \mid Z_{gi} \sim \mathcal{P}(\exp(Z_{gi})).$

Matching Moments:

$$\left\{egin{aligned} \sigma_g^2 \mathcal{T} &= \log(1+lpha_g) \ m_{gi} &= \log(\mu_{gi}) - rac{1}{2}\log(1+lpha_g). \end{aligned}
ight.$$

Constraint: constant diagonal

$$[\mathbf{V}(\phi)]_{ii}\equiv T$$

 \rightarrow true for an **ultrametric** tree.

28/42

DE for Inter-Species RNA-Seq Data From Simulation Framework Phylo Results Simul

From NB to PLN Phylogenetic PLN Simulation Setting

Inter Species Model - Simulation

$$egin{aligned} \mathbf{Z}_g &\sim \mathcal{N}ig(\mathbf{m}_g, \sigma_g^2 \mathbf{V}(\phi)ig) \ Y_{gi} \mid Z_{gi} &\sim \mathcal{P}(\exp(Z_{gi})ig). \end{aligned}$$

DE for Inter-Species RNA-Seq Data Simulation Framework Results Simulation Setting

Inter Species Model - Simulation

$$egin{aligned} \mathbf{Z}_g &\sim \mathcal{N}ig(\mathbf{m}_g, \sigma_g^2 \mathbf{V}(\phi)ig) \ Y_{gi} \mid Z_{gi} &\sim \mathcal{P}(\exp(Z_{gi})ig) \,. \end{aligned}$$

- m_{gi} , σ_g^2 chosen to match moments of Soneson and Delorenzi (2013)
- ℓ_{gi} known or simulated

DE for Inter-Species RNA-Seq Data Simulation Framework Results Simulation Setting

Inter Species Model - Simulation

$$egin{aligned} \mathbf{Z}_g &\sim \mathcal{N}ig(\mathbf{m}_g, \sigma_g^2 \mathbf{V}(\phi)ig) \ Y_{gi} \mid Z_{gi} &\sim \mathcal{P}(\exp(Z_{gi})ig). \end{aligned}$$

- m_{gi} , σ_g^2 chosen to match moments of Soneson and Delorenzi (2013)
- ℓ_{gi} known or simulated
- $V(\phi)$: choose phylogenetic model
 - BM
 - OU
 - with errors

$$t_{1/2} = 50\%$$

 $rac{s^2}{\sigma_g^2} \in \{0\%, 20\%, 40\%\}$

From NB to PLN Phylogenetic PLN Simulation Setting

Simulation Setting

(Stern and Crandall, 2018)

Orconectes australis

Cambarus dubius

Simulations Crayfish Data

Tree Correlation Matters

Simulations Crayfish Data

Tree Correlation and Regularisation Matter

Simulations Crayfish Data

Tree Group Design Matters

Simulations Crayfish Dat

Tree Group Design Matters

Simple BM ANOVA

$$\mathbf{y} = \theta_0 \mathbf{1} + \theta_1 \mathbf{x} + \sigma \mathbf{e}^{BM}$$
 $\mathbb{V}ar\left[\mathbf{e}^{BM}\right] = \mathbf{V}^{tree} = [t_{ij}]_{i,j}$

Simple BM ANOVA

$$\mathbf{y} = \theta_0 \mathbf{1} + \theta_1 \mathbf{x} + \sigma \mathbf{e}^{BM}$$
 $\mathbb{V}ar\left[\mathbf{e}^{BM}\right] = \mathbf{V}^{tree} = [t_{ij}]_{i,j}$

Estimator Variance:

$$\mathbb{V}$$
ar $\left[\hat{\theta}_{1}\right] = \sigma^{2} (\mathbf{X}^{T} \mathbf{V}^{\text{tree}^{-1}} \mathbf{X})_{2,2}^{-1} \qquad \mathbf{X} = (\mathbf{1} \ \mathbf{x})$

Simple BM ANOVA

$$\mathbf{y} = \theta_0 \mathbf{1} + \theta_1 \mathbf{x} + \sigma \mathbf{e}^{BM} \qquad \mathbb{V} \mathrm{ar} \left[\mathbf{e}^{BM} \right] = \mathbf{V}^{\mathrm{tree}} = [t_{ij}]_{i,j}$$

Estimator Variance:

$$\mathbb{V}$$
ar $\left[\hat{\theta}_{1}\right] = \sigma^{2} (\mathbf{X}^{T} \mathbf{V}^{\text{tree}^{-1}} \mathbf{X})_{2,2}^{-1} \qquad \mathbf{X} = (\mathbf{1} \ \mathbf{x})$

Independent and Balanced Data (star tree):

$$\mathbb{V}$$
ar $\left[\hat{\theta}_{1}\right] = \sigma^{2} \frac{4}{n}$

Simple BM ANOVA

$$\mathbf{y} = \theta_0 \mathbf{1} + \theta_1 \mathbf{x} + \sigma \mathbf{e}^{BM}$$
 $\mathbb{V}ar\left[\mathbf{e}^{BM}\right] = \mathbf{V}^{tree} = [t_{ij}]_{i,j}$

Estimator Variance:

$$\mathbb{V}$$
ar $\left[\hat{\theta}_{1}\right] = \sigma^{2} (\mathbf{X}^{T} \mathbf{V}^{\text{tree}^{-1}} \mathbf{X})_{2,2}^{-1} \qquad \mathbf{X} = (\mathbf{1} \ \mathbf{x})$

Independent and Balanced Data (star tree):

$$\mathbb{V}$$
ar $\left[\hat{\theta}_{1}\right] = \sigma^{2} \frac{4}{n}$

Normalized dapaESS:

$$\mathsf{dapaESSn}(\mathcal{T}, \mathbf{x}) = \frac{1/(\mathbf{X}^{\mathcal{T}} \mathbf{V}^{\mathsf{tree}-1} \mathbf{X})_{2,2}^{-1}}{n/4}$$

Simulations Crayfish Data

Differential Analysis Phylogenetic Asymptotic ESS

block design:

$$\mathsf{dapaESSn}(\mathcal{T}, \mathbf{x}) = 0.69$$

 \rightarrow harder than the independent case

sight design:

$$\mathsf{dapaESSn}(\mathcal{T}, \textbf{x}) = 1.4$$

alt design:

$$\mathsf{dapaESSn}(\mathcal{T}, \mathbf{x}) = 5.1$$

 \rightarrow easier than the independent case
DE for Inter-Species RNA-Seq Data Simulation Framework Results

Simulations Crayfish Data

OU Makes the Signal Weaker

Simulations Crayfish Data

Intra-Specific Variations

Simulations Crayfish Data

Normalization

DE for Inter-Species RNA-Seq Data Simulation Framework Results

Simulations Crayfish Data

Trend in eBayes Correction

DE for Inter-Species RNA-Seq Data Simulation Framework Results

Simulations Crayfish Data

Crayfish Data

Stern and Crandall (2018): phylolm OU: limma cor:

93 DE genes17 DE genes6 DE genes

Orthogroup	adj. p-value	Uniprot top hit	Protein name
OG0002505	2.3e-09	XYLA ARATH	Xylose isomerase
OG0001105	4.4e-03	PIPA DROME	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase
OG0000233	6.2e-03	RTBS DROME	Probable RNA-directed DNA polymerase from transposon BS
OG0002370	1.8e-02	ARRH LOCMI	Arrestin homolog
OG0006977	2.3e-02	CSK2B RAT	Casein kinase II subunit beta
OG0001281	2.9e-02	OPSD PROCL	Rhodopsin

Question: Same mechanisms of vision loss in each group ? \rightarrow analysis by clade.

Conclusion and Perspectives

Simulation Framework:

• Uses both phylogenetic and RNA-Seq specificities

Inter-Species RNA-Seq Data:

- Group Design matters
- A new statistical tool is needed:
 - Include phylogenies in RNA-Seq analyses

Bastide P., Soneson C., Lespinet O., Gallopin M. (2022). bioRxiv Benchmark of Differential Gene Expression Analysis Methods for Inter-species RNA-Seq Data using a Phylogenetic Simulation Framework.

compcodeR v1.32

Conclusion and Perspectives

Simulation Framework:

• Uses both phylogenetic and RNA-Seq specificities

Inter-Species RNA-Seq Data:

- Group Design matters
- A new statistical tool is needed:
 - Include phylogenies in RNA-Seq analyses

Bastide P., Soneson C., *Stern D.B.*, Lespinet O., Gallopin M. In revision.

A Phylogenetic Framework to Simulate Synthetic Inter-species RNA-Seq Data.

```
compcodeR v1.32
```


Bibliography I

Blake, Thomas, Blischak, et al. 2018. Genome Biology. 19:162.

Brawand, Soumillon, Necsulea, et al. 2011. Nature. 478:343-348.

- Catalán, Briscoe, Höhna. 2019. Genetics. 213:581-594.
- Chen, Lun, Smyth. 2014. In: Datta, Nettleton, editors, Statistical Analysis of Next Generation Sequencing Data, Cham: Springer International Publishing, pp. 51–74.
- Chen, Swofford, Johnson, et al. 2019. Genome Research. 29:53-63.

Felsenstein. 1985. The American Naturalist. 125:1-15.

Hansen. 1997. Evolution. 51:1341.

Harmon, Losos, Davies, et al. 2010. Evolution. 64:2385-2396.

Ho, Ané. 2014. Systematic Biology. 63:397-408.

Loughman. 2010. Southeastern Naturalist. 9:217–230.

Love, Huber, Anders. 2014. Genome Biology. 15:550.

Mortazavi, Williams, McCue, et al. 2008. Nature Methods. 5:621-628.

Musser, Wagner. 2015. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 324:588–604.

Robinson, Oshlack. 2010. Genome Biology. 11:R25.

- Rohlfs, Harrigan, Nielsen. 2014. *Molecular Biology and Evolution*. 31:201–211. Rohlfs, Nielsen. 2015. *Systematic Biology*. 64:695–708.
- Smyth. 2004. Statistical Applications in Genetics and Molecular Biology. 3:1–25.
- Smyth, Michaud, Scott. 2005. Bioinformatics. 21:2067-2075.
- Soneson, Delorenzi. 2013. BMC Bioinformatics. 14:91.
- Stern, Crandall. 2018. Molecular Biology and Evolution. 35:2005–2014.
- Szöllősi, Tannier, Daubin, et al. 2015. Systematic Biology. 64:e42-e62.
- Tekaia. 2016. Genomics Insights. 9:GEI.S37925.
- Torres-Oliva, Almudi, McGregor, et al. 2016. BMC Genomics. 17.

Wagner, Kin, Lynch. 2012. *Theory in Biosciences*. 131:281–285. **Photo Credits**

- Orconectes australis: Marshal Hedin, CC BY-SA 2.5
- Cambarus dubius: Loughman (2010)

Thank you for listening

Institut Montpelliérain Alexander Grothendieck

Appendices